Physics 13-02 Radioactive Decay Simulation Lab

Objectives

• Model radioactive decay and find the half-life of dice.

Materials

• 100 dice

Theory

Radioactive nuclei don't just decay all at once. There is a probability that each nucleus will decay in a given amount of time. This probability is related to the half-life. The shorter the half-life, the more likely the nucleus will decay. Dice have a set probability for rolling a certain side, so dice can be used to simulate radioactive decay.

Radioactive decay is modeled by

$$N = N_0 e^{-\lambda t}$$

where *N* is the amount left at time *t*, N_0 is the initial amount, and λ is the decay constant.

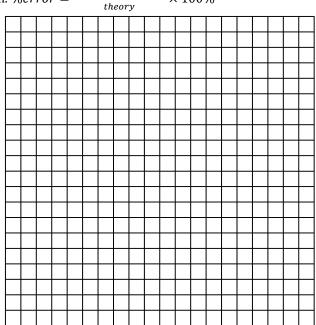
Half-life can be found from the decay constant.

$$t_{1/2} = \frac{\ln(2)}{\lambda}$$

Let each roll of the dice represent 1 minute.

Procedure

- 1. Roll the 100 dice.
 - a. Remove all the dice that are a 1. Put those in a separate pile.
 - b. Count the number of dice left and record it in the table.
- 2. Roll the remaining dice.
 - a. Remove all the dice that are a 1. Put those in a separate pile.
 - b. Count the number of dice left and record it in the table.
- 3. Repeat step 2 until there are less than 10 dice left.


Analysis

- 4. Graph the number of remaining dice vs time (roll).
- 5. Use the regression feature of a calculator to find the exponential model for the graph. *f*(*x*) = _____
- 6. Compare this to $N = N_0 e^{-\lambda t}$ and find the decay constant. $\lambda =$ _____/min
- 7. Calculate the half-life.

8. Find the percent error with the theoretical value of 4.15 min. $\% error = \frac{theory-experiment}{theory} \times 100\%$

%error = _____

Time (Throw #)	Dice decayed	Dice left
	-	

